Spark only allows sorting by keys and not by values. Sorting by values can be achieved mapping to a new pair with the key as the value and the value as the key. Then sorting by key and rendering the output.
long start = System.nanoTime(); JavaPairRDD<String, Stats0> extracted = dataSet1.mapToPair(s -> new Tuple2<>(getIp(s), new Stats0(1))); JavaPairRDD<String, Stats0> baseKeyPair = extracted.reduceByKey(Stats0::merge); // Map for sorting JavaPairRDD<Integer, Tuple2<String, Stats0>> sortingRDD = baseKeyPair .mapToPair(t ->new Tuple2<>(t._2().getCount(), t)); // Sort by keys sortingRDD = sortingRDD.sortByKey(false); // Collect to display the output List<Tuple2<Integer, Tuple2<String, Stats0>>> output = sortingRDD.collect(); end = System.nanoTime(); for (Tuple2<Integer, Tuple2<String, Stats0>> t : output) { System.out.println(t._2()._1 + "\t" + t._1()); } System.out.println("Processed in : " + (int) (end - start)/1000000 + " ms");
This Java example is using the class Stats0, that is a wrapper around an integer. This can be customized to use a generic comparator, and this way use any Object type as long as it is serializable.
public static class Stats0 implements Serializable { private final int count; public Stats0(int count) { this.count = count; } public Stats0 merge(Stats0 other) { return new Stats0(count + other.count); } public int getCount() { return count; } public String toString() { return String.format("n=%s", count); } }